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Need New Physics-1

BSM New phys. are called for: (1) ΩDMh2 ∼ 0.12 (2) and
mν 6= 0

DM: something BSM electrically charge neutral and
stable/long-lived.

(Too) Many models for Majorana ν. The key is the effective
Weinberg operator (LH)2 which breaks U(1)L.

Accidental global U(1)L ∈ SM and it connects to mν .

Majorona mass is controlled by the scale of U(1)L SSB in the
type-I (and inverse see-saw) ( PLB730, 347.)

yN
c
NSL → mN = y〈SL〉

DM is stabilized by the Krauss-Wilczek, U(1)L → Z2.

Global SSB U(1)L DM-mν model: Goldstone is built in. It
contributes to radiation energy density.
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Need New Physics-2:effective neutrino number

Neutrinos decouple at T ∼ 1MeV ( Γweak . H ). Later, the
photons were heated up by e+e− annihilation,

Tν =

(
4

11

)1/3

Tγ ∼ 2K

The present relativistic energy density of the universe

ρrad = gγ
π2

30
T 4
γ + gν

π2

30

7

8
T 4
ν =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ

Taking into account the incomplete decoupling, NSM
eff = 3.046

(Mangano et al. 2005). Nonzero 4Neff = Neff − 3.046 call
for new relativistic DOF beyond the SM.

This new DOF is coined as dark radiation.
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Neff After Planck 2015

Planck 2015, 1502.01589, Neff = 3.15(46) at 95%CL.
Although the SM seems OK, the statistical significance to rule
out DR is still very poor.

2.5 < Neff < 3.5 at 95%CL, Valentino et el, PRD93,083523.

4Neff = 0.29(15), G. Steigman, June 2015, INT talk.

4Neff = 0.4− 1.0, Riess et el(WFC3 on HST), Astrophys.J.
826 (2016)

Minimal Model of Majoronic Dark Radiation and Dark Matter and its Phenomenology



One more thing to be taken into account

Operational see-saw needs stable vacuum at the 6L scale µLV ,
or µLV < µSM

VS .

(νc , νR)

(
0 yDvSM

yDvSM MN(= ysvl )

)(
ν
νc

R

)
µSM

VS ' 1010−12 GeV

For φA, φB in V = λAφ
4
A + λBφ

4
B + λABφ

2
Aφ

2
B + ..., λA > 0,

λB > 0, λAB > −2
√
λAλB at any given energy scale. RGE

study is necessary.
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Model
Particle content:

L,Z2 SU(2) U(1)Y

S 2SSB,+ 1 0
Φ 1− (DM candidate) 1 0

H 0SSB,+ 2 1
2

NiR 1− 1 0

Li 1− 2 −1
2

Renormalizable Lagrangian: ( 8 new parameters)

and we take κ to be real, m2
Φ > 0, and define κ̄ ≡ λΦS vs + κ.
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Model

After SSB, 〈S〉 6= 0 and 〈H〉 6= 0, the fields are expanded as
Φ = 1√

2
(ρ+ iχ), S = 1√

2
(vs + s + iω) and for the Higgs

H = (0, v+h√
2

)T . ω is the massless Goldstone or Majoron.

〈S〉 is inv. under a U(1)L π−rotation, a Z2 parity remains:

s, ω, h −→ s, ω, h

ρ, χ −→ −ρ,−χ

Due to mixing, the physical mass eigenstates are(
h1

h2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
h
s

)
with mixing angle tan 2θ = λHS vH vS

λS v2
S−λv2

H
.

Identify h1 ≡ hSM with a mass of 125 GeV, h2 is a new
neutral scalar(just call them H and S).
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Model

In terms of the physical masses and mixing, we have

λH =
cos2 θM2

H + sin θ2M2
S

2v 2
H

, vS = −
sin θ cos θ(M2

H −m2
S )

vHλSH
,

λS =
sin2 θM2

H + cos θ2M2
S

2v 2
S

, yS =

√
2MN

vS
.

vH = 246GeV, mH = 125 GeV

for a given set of {MS , θ, λSH}, vS and λS are determined.

No solution found for MN < 0.5TeV, not sensitive otherwise.
We take MN = 1TeV as a benchmark value.

leptons interact with the Majoron via

1

2vs
(∂µω ψ̄lγ

µψl )

Very small(∝ mν) pseudoscalar couplings to u, d , e at 1-loop,
no constraints from stellar cooling

Minimal Model of Majoronic Dark Radiation and Dark Matter and its Phenomenology



Tdec of Majoron

However a dim-5 int.

Lf ω = −λHS mf

M2
h M2

s

f̄ f ∂µω∂µω

can be generated through scalar mixing:

Order of magnitude estimation gives

Γ(f f̄ ↔ ωω) ∼
λ2

HS m2
f

M4
HM4

S

× T 7
dec × N f

c

Since H ∼ T 2
dec/Mpl ,

Ncλ
2
HS m2

eff T 5
decMPl

M4
HM4

s

≈ 1.
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4Neff and Tdec

Conservation of Entropy in the co-moving volume give:

4Neff =
4

7

(
g∗(T +

ν )

g∗(T−ω )

) 4
3

where g∗ is the effective number of relativistic DOF.
∆Neff = {0.39, 0.055, 0.0451, 0.0423} for
Tdec = {mµ, 1GeV ,mc ,mτ} respectively.

Due to scalar mixing, H can always decays into a pair of
invisible ω’s,

Γωω =
1

32π

sin2 θM3
H

v 2
S

Γωω ≤ Γinv
H < 0.8 MeV gives Mmax

S via

M4
S

(M2
H −M2

S )2
≤ cos2 θ

32πm2
eff T 5

decMpl

v 2
HM7

H

Γinv
H
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MS , Tdec , and sin θ2

LHC-I, µ = 1.1± 0.11 gives indirect bound sin θ2 < 0.13 at 2
σ. Direct search from OPAL e+e− → hZ .

From rare B decay, |θ| < 0.002 for MS < 2GeV.
With this, the decoupling condition yields

λSH ∼
M2

HM2
S

T 3
dec

√
Tdec Mpl

� 1
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Relic density and direct detection

Relic density/ SI scattering can be calculated.

Thermal ΩDMh2 ∼ 0.1pb
〈σv〉 , 〈σv〉 = 2.5(1)× 10−9(GeV )−2.

limit from LUX (Mρ ∼ O(TeV ))
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1-loop beta function

Fermionic y 4 contributions responsible for vacuum instability.
In general, new scalar DOF’s help VS.
Possible new Landau pole in λΦ
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Numerical Scan

Comprehensive scan of the whole parameter space.
Randomly scan Tdec , MS , θ, Mρ, λΦS (∈ [−4

√
πλS , 4π]), κ̄,

λΦH , λΦ.

Requirements and experimental constraints in our search:

Improve the SM vacuum stability, µVS > µSM
VS

(µSM
VS1−loop = 2× 105GeV)

No Landau pole below µSM
VS

ΓH
inv < 0.8MeV.

Tdec ∈ [mµ, 2GeV ].
θ complies with all experimental bounds.
relic density 〈σv〉 = 2.5(1)× 10−9(GeV )−2.
Spin-independent direct DM search bound (LUX)

The largest RVS ≡ log10 µVS/µ
SM
VS we got ∼ 11. New scalar

DOF help to go up to GUT scale, but not Mpl .

Tdec > 1.3GeV, 1.5TeV < Mρ < 4TeV, MS ∈ [20, 100]GeV,
vS ,−κ ∈ [2− 20]TeV
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Some qualitative understanding

Tdec < 2GeV, small λSH .

λS V.S. needs large vS to suppress yS =
√

2MN/vs .

large vS ⇒ large mixing ⇒ large MS and higher Tdec .

To counter act yS in λS V.S. ⇒ sizable λΦS .

to improve λH V.S. ⇒ λΦH ∼ O(1).

λΦH ∼ O(1)⇒ Mρ > 1.5TeV.

to avoid λΦ Landau pole ⇒ small λΦ, λΦS are preferred.

small λΦS ⇒ Mρ < 4TeV, or too much DM.

RVS G:2− 4, B:4− 6,R:> 6.
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Numerical Scan: 2 examples

Config. Tdec MS θ Mρ vS RVS Br(ωω) Br(bb̄)
A 1.94 27.3 -0.03 2.2 6.7 2.1 0.87 0.11
B 1.87 67.6 -0.32 1.8 12.1 10.0 0.07 0.78

Tdec and MS ( Mρ and vS ) are in GeV (TeV).
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Numerical Scan:DM annihilation
For λS , λSH � 1 and Mρ � MW ,MZ ,MH , the total annihilation cross
section of ρρ→W +W −,ZZ ,HH can be estimated to be

〈σv〉W/Z/H ≡ 〈σv〉W +W − + 〈σv〉ZZ + 〈σv〉HH ∼
1

64π

λ2
ΦH

M2
ρ

× [2 + 1 + 1]

∼ 5× 10−9(GeV )−2

(
λΦH

0.5

)2(
1TeV

Mρ

)2

.

The channels ρρ→ SS , ωω open only when Mρ > 2TeV.
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Indirect search at LHC (heavy S)

A universal cos2 θ suppression to all signal strengthes due to
H − S mixing. MS > 40GeV detectable at LHC14 with 3ab−1.
the SM Higgs triple coupling λSM

HHH = 3M2
H/vH is modified to

λHHH = 6λHvHc3
θ − 6λS vS s3

θ + 3λSHsθcθ(vHsθ − vS cθ). And
δHHH ≡ (λHHH − λSM

HHH)/λSM
HHH

similarly, λSM
4H = 6λH = 3(MH/vH)2 is replaced by

λ4H = 6(λHc4
θ + λS s4

θ ) in this model.
δ4H ≡ (λ4H − λSM

4H )/λSM
4H , XS for triple Higgs production is

too small.
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S decay

The relevant modes are s into quarks, leptons, and ω’s.

Γ(s → ωω) =
1

32π

c2
θM3

s

v 2
s

, Γ(s → f f̄ ) =
Ms

8π
N f

c β
3
f

(mf sθ
v

)2

where βf = (1− 4m2
f

M2
s

)1/2. Dominate decay modes: ω-pair /bb̄.
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At Z factory (light S)

Future Circular Collider expects to have 1012−13 Z bosons at√
s = MZ with multi-ab−1 luminosity.(JHEP1401,164)

Defining yf =
M2

f f̄

M2
Z

we obtain

dBr(Z → Sf f̄ )

dy
=

g 2 sin2 θ

192π2 cos2 θW

√
y 2

f − 2yf (1 + r 2
Z ) + (1− r 2

Z )2

×
[
y 2

f + 2yf (5− r 2
Z ) + (1− r 2

Z )2
]

(1− yf )2
× Br(Z → f f̄ )

where rZ = MS
MZ

and 0 ≤ yf ≤ (1− rZ )2. The kinematic lower
bound can be safely taken to be zero even for yb.
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At Z factory-1

Note the lower bound for each decay mode.

Br(Z → bb̄ 6E )SM = 5.25× 10−8

Z → Sf̄ f signal stands out from the SM background.
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DM bound state?

DM ρ− ρ interact by exchanging t−channel S and H and this
force is attractive. The relevant terms are:

L ⊃ 1

2
[λΦHvHh + κ̄s]ρ2

κ̄� λΦHvH , s mediation dominates.
κ̄/Mρ ∈ [−1.0, 1.0] ⇒ DM may form bound state, Bρ.
Write the effective coupling between Bρ and 2 ρ as

L ∼ αBBρρ
2 .

By dimensional analysis, αB ∼ (κ̄2/Mρ).
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DM bound state decay Width

Decay width of Bρ, ΓB ∝ |ψ(0)|2 × |MBρ |2.
|ψ(0)|2 ∼ κ̄6/M3

ρ by dimension analysis.
Rescale the decay amplitude square and make it
dimensionless, broken into

|MBρ |2 = γss + γHH + γsH + γωω + γW ,Z + γf f̄

subscripts label the decay final state.
drop terms of O(vH/Mρ).

γss '
[
λΦS −

κ̄2

M2
ρ

]2

, γHH ' λ2
ΦH ,

γωω '
[
λΦS −

κ2

M2
ρ − κvS

]2

, γW ,Z ' 3λ2
ΦH

Finally, the decay width:

ΓB ∼ Mρ

(
κ̄

Mρ

)6

[γss + γωω + 4λ2
ΦH ]
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〈σv〉 and DM bound state

Put ΓB into the propagator squared, annihilation XS due to
Bρ resonant

σv ∼
α2

B(ΓB/MB)

(s −M2
B)2 + Γ2

BM2
B

ΓB/MB takes care the nearly on-shell Bρ decay.

When v � 1, s ∼ M2
B , no temperature dependence,

〈σv〉 ∼
α2

B

M3
BΓB

∼ RB

M2
ρ

[γss + γωω + 4λ2
ΦH ]

and

RB ≡
(

Mρ

κ̄

)2

[γss + γωω + 4λ2
ΦH ]−2

is the boost factor for indirect DM detection.

For |MBρ |2 ∼ O(100) and κ̄ ∼ 0.1Mρ, the boost factor
around 100.
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At IceCube

DM annihilate into Majoron pair is a few to 40%. With boost
factor 100, 〈σv〉(DM + DM → ωω) ∼ 10−26 − 10−24(cm3/s).

ω could be a component of the ‘apparent’ neutrino flux at
Eν = Mρ in IceCube and other neutrino observatories.

Shower events, mostly from the Galactic center.
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Summary

Minimal Majoron model with SM singlet scalars carrying
lepton numbers takes care of DR+DM+mν+V.S.

4Neff ∼ 0.05, or Tdec > mc is preferred.

Scalar DM, ρ, of mass 1.5− 4 TeV is required by V.S. and an
operational type-I see-saw.

MS ∈ [10, 100] GeV, mixing as large as 0.1.

S mainly decays into bb̄ and/or ωω.

Sensitive search will be Z → S + f f̄ , followed by S into a pair
of Majoron and/or b-quarks.

Possible DM bound state due to sizable Sρρ-coupling.

shower-like events with apparent neutrino energy at Mρ could
contribute to the neutrino flux in underground neutrino
detectors.
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At IceCube

IceCube/DeepCore All-flavour Search for Neutrinos from DM
Annihilations in the MW(1606.00209)

Taking Mρ = 2 TeV as example. In our model,

〈σv〉ωω = (0− 0.75)× 10−7(GeV )−2 ×
(

2TeV

Mρ

)2

×
(

BF

100

)
IceCube: < 2× 10−6(GeV )−2 for NFW, and < 10−5(GeV )−2

for Burkert,
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